Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Neurosci ; 28(8): 869-892, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28779572

RESUMO

Mutant mice deficient in hyaluronan (HA) have an epileptic phenotype. HA is one of the major constituents of the brain extracellular matrix. HA has a remarkable hydration capacity, and a lack of HA causes reduced extracellular space (ECS) volume in the brain. Reducing ECS volume can initiate or exacerbate epileptiform activity in many in vitro models of epilepsy. There is both in vitro and in vivo evidence of a positive feedback loop between reduced ECS volume and synchronous neuronal activity. Reduced ECS volume promotes epileptiform activity primarily via enhanced ephaptic interactions and increased extracellular potassium concentration; however, the epileptiform activity in many models, including the brain slices from HA synthase-3 knockout mice, may still require glutamate-mediated synaptic activity. In brain slice epilepsy models, hyperosmotic solution can effectively shrink cells and thus increase ECS volume and block epileptiform activity. However, in vivo, the intravenous administration of hyperosmotic solution shrinks both brain cells and brain ECS volume. Instead, manipulations that increase the synthesis of high-molecular-weight HA or decrease its breakdown may be used in the future to increase brain ECS volume and prevent seizures in patients with epilepsy. The prevention of epileptogenesis is also a future target of HA manipulation. Head trauma, ischemic stroke, and other brain insults that initiate epileptogenesis are known to be associated with an early decrease in high-molecular-weight HA, and preventing that decrease in HA may prevent the epileptogenesis.


Assuntos
Encéfalo/metabolismo , Epilepsia/metabolismo , Espaço Extracelular/metabolismo , Hialuronan Sintases/genética , Ácido Hialurônico/metabolismo , Animais , Encéfalo/fisiopatologia , Epilepsia/tratamento farmacológico , Epilepsia/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/uso terapêutico , Camundongos
2.
J Neurosci ; 34(18): 6164-76, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24790187

RESUMO

Hyaluronan (HA), a large anionic polysaccharide (glycosaminoglycan), is a major constituent of the extracellular matrix of the adult brain. To address its function, we examined the neurophysiology of knock-out mice deficient in hyaluronan synthase (Has) genes. Here we report that these Has mutant mice are prone to epileptic seizures, and that in Has3(-/-) mice, this phenotype is likely derived from a reduction in the size of the brain extracellular space (ECS). Among the three Has knock-out models, namely Has3(-/-), Has1(-/-), and Has2(CKO), the seizures were most prevalent in Has3(-/-) mice, which also showed the greatest HA reduction in the hippocampus. Electrophysiology in Has3(-/-) brain slices demonstrated spontaneous epileptiform activity in CA1 pyramidal neurons, while histological analysis revealed an increase in cell packing in the CA1 stratum pyramidale. Imaging of the diffusion of a fluorescent marker revealed that the transit of molecules through the ECS of this layer was reduced. Quantitative analysis of ECS by the real-time iontophoretic method demonstrated that ECS volume was selectively reduced in the stratum pyramidale by ∼ 40% in Has3(-/-) mice. Finally, osmotic manipulation experiments in brain slices from Has3(-/-) and wild-type mice provided evidence for a causal link between ECS volume and epileptiform activity. Our results provide the first direct evidence for the physiological role of HA in the regulation of ECS volume, and suggest that HA-based preservation of ECS volume may offer a novel avenue for development of antiepileptogenic treatments.


Assuntos
Encéfalo/patologia , Epilepsia/patologia , Espaço Extracelular/metabolismo , Glucuronosiltransferase/deficiência , Ácido Hialurônico/deficiência , Neurônios/fisiologia , Potenciais de Ação/genética , Animais , Estimulação Elétrica , Eletroencefalografia , Epilepsia/genética , Antagonistas de Aminoácidos Excitatórios/farmacologia , Espaço Extracelular/genética , Glucuronosiltransferase/genética , Hialuronan Sintases , Técnicas In Vitro , Camundongos , Camundongos Knockout , Modelos Neurológicos , Mutação/genética , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Neurônios/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Quinoxalinas/farmacologia
3.
Epilepsy Res ; 94(3): 163-76, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21353480

RESUMO

Application of 4-aminopyridine (4-AP, 100µM) in a solution containing 0.6mM Mg(2+) and 1.2mM Ca(2+) to hippocampal-entorhinal-perirhinal slices of adult rat brain induced ictal-like epileptiform activity in entorhinal and perirhinal cortices as revealed by electrophysiological field potential recordings. The ictal-like activity persisted after washing out the 4-AP. This persistence indicated that a change had occurred in the slice so that it was now "epileptic" in the absence of the convulsant 4-AP. Induction of persistent ictal-like activity was dependent upon the concentration of divalent cations during 4-AP exposure; that is, although 4-AP caused ictal-like activity in approximately half the slices in solution containing 1.6mM Mg(2+) and 2.0mM Ca(2+), this ictal-like activity did not persist upon washout of the 4-AP. Expression of the persistent ictal-like epileptiform activity required ionotropic glutamate-mediated synaptic transmission: application of the AMPA/kainate receptor antagonist NBQX after 4-AP washout reduced persistent ictal-like activity, and the combined application of NBQX and the NMDA receptor antagonist d-AP5 completely blocked it. In order to investigate the mechanism of induction of persistent ictal-like activity, several agents were applied before the introduction of 4-AP. Application of d-AP5 did not block the onset of ictal-like activity upon introduction of 4-AP but did prevent the persistence of the ictal-like activity upon washout of the 4-AP. In contrast, induction of persistent ictal-like activity was not prevented by simultaneous application of the group I metabotropic glutamate receptor (mGluR) antagonists LY 367385 and MPEP or by application of the protein synthesis inhibitor cycloheximide. In conclusion, we have characterized a new in vitro model of epileptogenesis in which induction of ictal-like activity is dependent upon NMDA receptor activation but not upon group I mGluR activation or protein synthesis.


Assuntos
4-Aminopiridina/farmacologia , Córtex Entorrinal/efeitos dos fármacos , Potenciais Evocados/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Cálcio/farmacologia , Cicloeximida/farmacologia , Eletrofisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Magnésio/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Sprague-Dawley
4.
Neuropharmacology ; 55(1): 47-54, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18538357

RESUMO

Co-application of the convulsant 4-aminopyridine (4-AP) and the GABA(B) receptor antagonist CGP 55845 to adult guinea pig hippocampal slices elicits giant GABA-mediated postsynaptic potentials (GPSPs) and epileptiform discharges. Here we tested the effects of the group I metabotropic glutamate receptor (mGluR) subtype-selective antagonists LY 367385 (mGlu1, 100 microM), MPEP (mGlu5, 10 microM), and MTEP (mGlu5, 500 nM) on this synchronous activity. Electrophysiological field recordings were performed in the CA3 region of hippocampal slices from adult guinea pigs. The mGlu5 receptor antagonists increased GPSP rate, but the mGlu1 receptor antagonist did not. This ability of mGlu5 receptor antagonists to increase the rate of GPSPs indicates that enough endogenous glutamate is released under these conditions to activate group I mGluR; nevertheless, co-application of a mGlu1 receptor antagonist (LY 367385 or JNJ 16259685) and MPEP did not decrease pre-existing epileptiform activity. Furthermore, co-application of LY 367,385 and MPEP did not prevent the emergence of epileptiform activity. When ionotropic glutamate receptor (iGluR) antagonists were present, neither MPEP nor the group I mGluR agonist DHPG changed GPSP rate, suggesting that pyramidal cell-to-interneuron iGluR-mediated synaptic connections are involved in the rate change mechanism. In contrast to the lack of effect of group I mGluR antagonists on epileptiform activity in the 4-AP/CGP 55845 model, group I mGluR antagonists blocked the emergence of longer epileptiform events and decreased the overall amount of synchronous activity in the GABA(A) antagonist/4-AP model. In conclusion, in the 4-AP/CGP 55845 model, enough glutamate was released to activate group I mGluRs and affect GPSP rate via mGlu5 receptors; however, this group I mGluR activation was not required for the generation of the epileptiform activity.


Assuntos
4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Hipocampo/efeitos dos fármacos , Ácidos Fosfínicos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Propanolaminas/farmacologia , Animais , Combinação de Medicamentos , Interações Medicamentosas , Cobaias , Técnicas In Vitro
5.
J Neurosci Methods ; 154(1-2): 1-18, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16554092

RESUMO

Cell-attached recording provides a way to record the activity of - and to stimulate - neurons in brain slices without rupturing the cell membrane. This review uses theory and experimental data to address the proper application of this technique and the correct interpretation of the data. Voltage-clamp mode is best-suited for recording cell firing activity, and current-clamp mode is best-suited for recording resting membrane potential and synaptic potentials. The magnitude of the seal resistance determines what types of experiments can be accomplished with a cell-attached recording: a loose seal is adequate for recording action potential currents, and a tight seal is required for evoking action potentials in the attached cell and for recording resting and synaptic potentials. When recording action potential currents, if the researcher does not want to change the firing activity of the cell, then it is important that no current passes from the amplifier through the patch resistance. In order to accomplish this condition, the recording pipette should be held at the potential that gives a holding current of 0. An advantage of cell-attached current-clamp over whole-cell recording is that it accurately depicts whether a synaptic potential is hyperpolarizing or depolarizing without the risk of changing its polarity.


Assuntos
Encéfalo/fisiologia , Técnicas de Patch-Clamp/métodos , Potenciais de Ação/fisiologia , Algoritmos , Animais , Estimulação Elétrica , Eletrofisiologia , Espaço Extracelular/fisiologia , Cobaias , Técnicas In Vitro , Potenciais da Membrana , Técnicas de Patch-Clamp/instrumentação , Sinapses/fisiologia
6.
J Neurophysiol ; 93(5): 2656-67, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15590725

RESUMO

In the presence of 4-aminopyridine, interneurons fire synchronously, causing giant GABA-mediated postsynaptic potentials (GPSPs; GPSCs in voltage clamp) in CA3 pyramidal cells in hippocampal slices from adult guinea pigs. These triphasic GPSPs are composed of a GABA(A)-mediated hyperpolarizing component, a depolarizing component, and a GABA(B)-mediated hyperpolarizing component. We propose that GABA(B) receptors exert control over the postsynaptic depolarizing GABA response. Microelectrode and cell-attached recordings demonstrated that the mean number of action potentials during the depolarizing component of the GPSP increased dramatically in the presence of the GABA(B) receptor antagonist (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2- hydroxypropyl](phenylmethyl) phosphinic acid (CGP 55845A; P = 0.003 and 0.0005, respectively). Whole cell voltage-clamp recordings showed that the postsynaptic GABA(B) and depolarizing GABA components of the GPSC overlap substantially, allowing the GABA(B)-mediated hyperpolarization to suppress the excitation mediated by the depolarizing GABA component. Further voltage-clamp recordings showed that CGP 55845A increased the duration of the depolarizing GABA component of the GPSC even when the GABA(B) component had already been blocked by internal QX-314, suggesting that CGP 55845A also increased the duration of GABA release. When glutamatergic transmission is intact, GPSPs directly precede epileptiform afterdischarges. We hypothesize that the depolarizing component of the GPSP triggers the epileptiform events and show here that enhancement of the depolarizing component with CGP 55845A increased epileptiform activity. CGP 55845A increased the likelihood of a GPSP triggering an epileptiform event from 32 to 99% (P = 0.0000001), and significantly increased the number of afterdischarges per epileptiform event (P = 0.001). Loss of GABA(B) receptor function is associated with temporal lobe epilepsy in rodents and humans. We show here that GABA(B) receptors exert control over the synaptic depolarizing GABA response and that block of GABA(B) receptors makes the depolarizing GABA response excitatory and proconvulsive.


Assuntos
Hipocampo/citologia , Lidocaína/análogos & derivados , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia , 4-Aminopiridina/farmacologia , Anestésicos Locais/farmacologia , Animais , Interações Medicamentosas , Estimulação Elétrica/métodos , Antagonistas GABAérgicos/farmacologia , Ácido Glutâmico/farmacologia , Cobaias , Técnicas In Vitro , Lidocaína/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos da radiação , Neurônios/fisiologia , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Ácidos Fosfínicos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Propanolaminas/farmacologia , Piridazinas/farmacologia
7.
J Neurophysiol ; 87(3): 1404-14, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11877515

RESUMO

Whole cell voltage-clamp recording and focal application of the neurotransmitter gamma-aminobutyric acid (GABA) were used to investigate the ability of exogenous GABA applied to different locations within the guinea pig hippocampal slice to trigger a giant GABA-mediated postsynaptic current (GPSC) in pyramidal cells. A GPSC reflects the synchronous release of GABA from a group of interneurons. Recordings were done in the presence of 4-aminopyridine (4-AP) and blockers of ionotropic glutamatergic synaptic transmission. Spontaneous GPSCs occurred rhythmically in pyramidal cells under these conditions. Brief focal pressure application of GABA (500 microM; 30-200 ms) to CA3 stratum lacunosum-moleculare (SLM) or to the border between CA3 s. radiatum (SR) and SLM triggered an "all-or-none" GPSC in CA3 and CA1 pyramidal cells that looked like the spontaneous GPSCs. During the refractory period following a spontaneous GPSC, application of GABA could not trigger a GPSC. Both spontaneous GPSCs and GPSCs triggered by exogenous GABA were blocked by suppressing synaptic transmission with high Mg(2+)/low Ca(2+) bath solution. On the other hand, focal application of GABA to CA3 s. oriens (SO) or to proximal SR did not trigger a GPSC in the CA3 pyramidal cell; instead it produced a graded response. Focal application of GABA to regions other than CA3 was also tested. Focal application of GABA to CA1 SLM always triggered a GPSC in the CA3 pyramidal cell. Focal application of GABA within the outer two-thirds of the dentate molecular layer often elicited a GPSC in the CA3 pyramidal cell. In contrast, focal application of GABA to CA1 SO, to CA1 SR, or to the hilus elicited no current response in the CA3 pyramidal cell. These data indicate that the GPSC recorded in pyramidal cells that was triggered by focal GABA application resulted from the synchronous synaptic release of GABA from activated interneurons rather than from the binding of exogenous GABA to receptors on the pyramidal cell. Furthermore, the "all-or-none" nature of the response to SLM GABA applications of different durations indicates that the exogenous GABA was exciting (directly or indirectly) some members of a network of interneurons, which in turn recruited the rest of the network, rather than individually activating each interneuron that contributed to the GPSC. Interestingly, the effective sites of GABA application--CA3 SLM, CA1 SLM, and the outer two-thirds of the dentate molecular layer--are also the sites which receive direct innervation from the entorhinal cortex in an intact animal.


Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Ácido gama-Aminobutírico/farmacologia , Animais , Giro Denteado/citologia , Giro Denteado/fisiologia , Cobaias , Interneurônios/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Período Refratário Eletrofisiológico/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...